컴퓨터공학

진법과 진법 변환(2진수, 8진수, 10진수, 16진수)

경환 2023. 5. 30. 08:37

진법이란?

진법이란 수를 표기하는 방법 중 하나로 임의의 숫자 범위를 사용하여 수를 표현하는 방법입니다.

가장 널리 사용되는 진법은 10진법(Decimal System)입니다. 10진법은 0부터 9까지의 10개의 숫자를 사용하여 수를 표현합니다. 예를 들어, 10진법에서 숫자 123는 1 * 10^2 + 2 * 10^1 + 3 * 10^0으로 표현됩니다.

 

그러나 다른 진법도 있습니다. 다른 진법은 숫자의 갯수와 사용되는 기호의 종류에 따라 구분됩니다. 몇 가지 일반적인 진법은 다음과 같습니다

 

  • 10진법 : 0~9까지의 숫자로 수를 표현하는 방법으로 우리가 일상 생활에서 사용하는 수 표현 방법
  • 2진법 : 0과 1, 두 개의 숫자로 수를 표현하는 방법, 컴퓨터에서 데이터를 처리하는 데에 사용
  • 8진법 : 0~7까지의 숫자로 수를 표현하는 방법, 컴퓨터 프로그래밍에서 사용
  • 16진법 : 0~9까지의 숫자와 A, B, C, D, E, F 문자로 수를 표현하는 방법, 컴퓨터 메모리 주소 표기, 색상 코드 등에 사용

 

0~9까지는 10진수와 같고 10부터 15까지는 A, B, C, D, E, F 영문자 순서로 나타냅니다.

10
진법
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16
진법
0 1 2 3 4 5 6 7 8 9 A B C D E F

 

진법 변환

  • 한 진법의 수를 다른 진법으로 표현하는 과정

 

1 )   X진수 → 10진수

X진수의 각 자리 값과 각 자리의 지승의 승을 곱한 후 모두 더함

 

2 )   10진수 → X진수

정수 : 10진수의 수를 X진수로 계속 나눠서 나온 나머지를 역순으로 읽음

소수 : 10진수의 수를 X진수로 소수점 아래가 0이 될때까지 곱하고 나온 정수를 읽음

 

 

3 )   2진수 → 8진수, 16진수

소수점을 기준으로 좌우로 8진수는 3자리씩, 16진수는 4자리씩 끊어주고 빈자리는 0으로 채움

 


 

여기까지 컴퓨터 공학에서 자주 사용하는 2진법, 8진법, 16진법에 대해서 정리해보았습니다.

진법은 숫자를 표현하고 계산하는 데 사용되며, 다양한 분야에서 활용된다고 합니다.

평소에 웹 개발하면서는 사용할 일이 딱히 없지만 진법 변환은 정보처리기사 시험이나 기술면접 시험에도 가끔 나오는 기초적인 부분이라고 생각하고 이 정도는 공부해놓는 것이 좋겠습니다.